
FALL 2022: MATH 790 HOMEWORK

The page numbers in each assignment below refer to those in the course textbooks. LADW refers to the
text Linear Algebra Done Wrong

HW 1. Read Chapter 1 of LADW and work the following problems.

Let V be a vector space over the field F . Note that we are not assuming that V is finite dimensional.

(i) Let {u1, . . . , un} ⊆ V and set U := 〈u1, . . . , un〉. Suppose v1, . . . , vm ∈ U are linearly independent.
Prove that m ≤ n.

(ii) Use (i) to show that if V has a finite basis, then every basis of V has the same number of elements.
(iii) Assume that F = C. Prove that V is also a vector space over R, and assuming V is finite dimensional

over C, find the dimension of V as a vector space over R in terms of the dimension of V over C.
(iv) Let W ⊆ V be a subspace. Use Zorn’s lemma to prove there exists a subspace U ⊆ V maximal with

respect to the property that W ∩ U = 0.

HW 2. Let V be a vector space over the field F .

(i) Prove that if the dimension of V equals n, with n > 0, then there cannot exist a chain of subspaces
(0) (W1 · · · (Wn ( V . Conclude that if U1 ⊆ U2 ⊆ U3 ⊆ · · · is an ascending chain of subspaces of
V , then there exists n0 ≥ 1 such that Us = Un0

, for all s ≥ n0.
(ii) Suppose F is infinite. Prove that V is not the union of finitely many proper subspaces of V .

HW 3. This homework uses the notation from the second day of class, as it appears in the Daily Update
from August 24. Let A be an n× n matrix with coefficients in the field F .

(i) Let T : V →W be a linear transformation and set A = [T ]BWBV . For v ∈ V let [v]BV denote the n× 1

column vector in Fn obtained as follows: If v = a1v1 + · · ·+ anvn, then [v]BV =

a1...
an

. The vector

[T (v)]BW in W is defined similarly. Prove that [T (v)]BW = A · [v]BV .
(ii) Let E be an elementary matrix, i.e., an n × n matrix obtained from In by applying an elementary

row operation. Prove that EA is obtained from A by apply the same elementary row operation to
A.

(iii) Let E be an elementary matrix. Show that: (a) If E is type 1 with λ ∈ F , then E−1 is type 1 using
λ−1; (b) If E is type 2, then E−1 = E; (c) If E is type 3, obtained by Ri + λRj applied to In, then
E−1 is Ri − λRj applied to In.

(iii) Prove that if A is any matrix, then there is a sequence of elementary row operations that put A into
reduced row echelon form.

(iv) Show that if E is an elementary matrix corresponding to an elementary row operation of a given
type, then Et is an elementary matrix corresponding to a row operation of the same type.

HW 4. For these problems, you may use any of the properties of the determinant derived in class.

(i) Let A be an n× n matrix over Q such that every entry is ±1. Prove that |A| is divisible by 2n−1.
(ii) Suppose that A and B are (2k+ 1)× (2k+ 1) matrices over R such that AB = −BA. Prove that A

and B cannot both be invertible.

HW 5. 1. LADW, Chapter 3: 3.11, 3.12, 5.3, 5.5, 5.6.

2. Suppose A ∈ Mn(F ), T ∈ L(V, V ) and p(x) ∈ F [x], the ring of polynomials with coefficients in F .

(i) Prove that p(A) ∈ Mn(F ) and p(T ) ∈ L(V, V ).
(ii) Explain why a matrix in Mn(F [x]) can be regarded as a polynomial with coefficients in Mn(F ).
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HW 6. Let V be a vector space of dimension n over the field F .

(i) Prove that the vector spaces L(V, V ) and Mn(F ) are isomorphic.
(ii) Using the Cayley-Hamilton theorem for matrices, prove that χT (T ) = 0, for all T ∈ L(V, V ).
(iii) For f(x) ∈ F [x], with s the degree of f(x), prove that |xIs −C(f(x))| = f(x), where C(f(x)) is the

companion matrix of f(x).

HW 7. Prove the uniqueness statement in the division algorithm, i.e., prove that if f(x), g(x), h(x), r(x), h0(x), r0(x)
are in F [x] and

g(x) = f(x)h(x) + r(x) = f(x)h0(x) + r0(x),

where r(x), r0(x) are either zero or have degree less than the degree of f(x), then h(x) = h0(x) and
r(x) = r0(x).

HW 8. LADW, Chapter 5: 1.7, 1.8. And: Verify the inner product space axioms for Example 2 of the
Daily Update for September 9.

HW 9. 1. Let V = M2(R) with inner product 〈A,B〉 := tr(AtB). Find an orthonormal basis for the

subspace W := 〈
(

1 0
1 1

)
,

(
1 1
0 1

)
〉.

2. Let P2(R) denote the vector space of real polynomials having degree less than or equal to 2 with inner

product 〈p(x), q(x)〉 :=
∫ 1

0
p(x)q(x) dx. Find an orthogonal basis for P2(R).

HW 10. Let V be a vector space over the field F .

1. Assume v1, . . . , vn ∈ V is a basis for V . For 1 ≤ r ≤ n, set W1 := 〈v1, . . . , vr〉 and W2 := 〈vr+1, . . . , vn〉.
Prove that V = W1 ⊕W2.

2. Suppose V = W1 ⊕ · · · ⊕Wt for subspaces Wi ⊆ V . Fix 1 ≤ r ≤ t and set U1 := W1 + · · · + Wr and
U2 := Wr+1 + · · ·+Wt. Prove that V = U1 ⊕ U2.

3. Assume that V is finite dimensional and T ∈ L(V, V ). Consider the following scenario: µT (x) = p(x)q(x),
where p(x), q(x) ∈ F [x] have no common factor. Write W for the kernel of p(T ) and U for the kernel of
q(T ). Prove that V = W ⊕U . For this you will need the following consequence of Bezout’s Principle: There
exist a(x), b(x) ∈ F [x] such that 1 = a(x)p(x) + b(x)q(x).

HW 11. For the real symmetric matrix A =

1 0 2
0 1 0
2 0 1

, find an orthogonal matrix P such that P−1AP is a

diagonal matrix. Here, we mean that the columns of the diagonalizing matrix P should form an orthonormal
basis for R3.

HW 12. 1. Let F be a field and TA : F 2 → F 2 be the linear transformation whose matrix with respect

to the standard basis is A =

(
0 −1
1 0

)
. Determine if TA is diagonalizable over the fields: (a) F = R, (b)

F = C, (c) F = Z2, and (d) F = Z3.

2. Let TB : R2 → R2 be the linear transformation whose matrix with respect to the standard basis is

B =

(
0 −6
1 −5

)
. Show that TB is diagonalizable. Find an invertible 2 × 2 matrix P such that P−1BP has

the eigenvalues of B down its diagonal.

3. Let v′1, . . . , v
′
n be a basis for V and P = (pij) be an invertible n × n matrix. For each 1 ≤ j ≤ n, write

vj = p1jv + 1 + · · ·+ pnjv
′
n. Prove that v1, . . . , vn is a basis for V .

HW 13. For A and B as in Homework 12, find an invertible matrices that diagonalize A and B.

HW 14. Let V denote the vector space of 2 × 2 real matrices with standard basis Ei,j where Ei,j is the
2 × 2 matrix with i, j entry equal to 1 and 0s elsewhere. Thus {E1,1, E1,2, E2,1, E2,2} is a basis for V . Let
tr denote the trace function as an element of V ∗. Identifying V ∗ with the space of ordered 4-tuples with
entries in F , write tr in terms of the dual basis {E∗1,1, E∗1,2, E∗2,1, E∗2,2}.
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HW 15. 1. Let TC : R3 → R3 be the linear transformation whose matrix with respect to the standard basis

is C =

−4 2 −2
2 −7 4
−2 4 −7

. Find an orthonormal basis consisting of eigenvectors. Find an orthogonal matrix

Q such that Q−1CQ has the eigenvalues of C down its diagonal.

2. Find a 2× 2 matrix over R that is diagonalizable, but not orthogonally diagonalizable.

HW 16. 1. Let V be a finite dimensional inner product space over C. Let v, w ∈ V and suppose
〈T (v), T (v)〉 = 〈T ∗(v), T ∗(v)〉 for all v in V . Prove that the imaginary parts of 〈T (v), T (w)〉 and 〈T ∗(v), T ∗(w)〉
are equal for all v, w ∈ V , by starting with the equation

〈T (v − iw), T (v − iw)〉 = 〈T ∗(v − iw), T ∗(v − iw)〉.

This completes the proof of the lemma from class stating that if 〈T (v), T (v)〉 = 〈T ∗(v), T ∗(v)〉 for all v in
V , then 〈T (v), T (v)〉 = 〈T ∗(v), T ∗(w)〉, for all v, w ∈ V .

2. For V a finite dimensional inner product space over C and for T ∈ L(V, V ), prove:

(i) kernel(T ∗) = (range(T ))⊥.
(ii) kernel(T )⊥ = (range(T ∗).

(iii) kernel(T ) = (range(T ∗))⊥

(iv) range(T ) = (kernel(T ∗))⊥.

HW 17. Consider the matrix

1 1 0
0 1 1
1 0 1

. Show that A is a normal matrix and find: (a) An orthonormal

basis B ⊆ C3 such that [T ]BB is diagonal and an orthonormal basis D ⊆ R3 such that [T ]DD =

λ 0 0
0 α β
0 −β α

,

for λ, α, β ∈ R and β > 0.

HW 18. 1. Let A be an m×n matrix over R or C. Prove that: (a) A∗A and AA∗ have the same eigenvalues,
counted with multiplicity and (b) A∗A and A have the same rank.

2. For each of the following matrices A, find the singular values of A and the unitary (or orthogonal) matrices
Q and P (of the appropriate dimensions) such that Q∗AP = Σ, where Σ has the singular values of A down

its diagonal: (a) A =

(
i 2i
3i 6i

)
; (b) A =

(
1 −1 1 −1

)
; (c) A =

3 2
2 3
2 −2

.

HW 19. Let F [x] denote the ring of polynomials with coefficients in the field F .

(i) Let p(x) ∈ F [x] be a non-constant irreducible polynomial. Prove that for any non-constant f(x) in
F [x], the GCD of p(x), f(x) is either p(x) or 1.

(ii) Show that if p(x) is irreducible over F and p(x) divides f(x) · g(x), then p(x) divides f(x) or p(x)
divides g(x). (Hint: Use (i) and Bezout’s Principle.)

(iii) Prove that if p1(x) · · · pr(x) = q1(x) · · · qs(x), and each pi(x), qj(x) is irreducible over F , then r = s,
and after re-indexing, qi(x) = αi · pi(x), for some αi ∈ F . In other words, the factorization property
for polynomials in F [x] is in fact a unique factorization property.

HW 20. 1. Consider f(x) = x4 + x3 + x+ 1 and x4 + 2x in Z2[x]. Use the Euclidean algorithm to find the
GCD of f(x) and g(x), then write this GCD as a(x)f(x) + b(x)g(x), for some a(x), b(x) ∈ Z2[x].

2. Give a detailed proof of the following: Assume V is a finite dimensional vector and T : V → V a linear
operator on V . Suppose V = W1⊕· · ·⊕Wr, where each Wi is a T -invariant subspace of V . Suppose Bi ⊆Wi

is basis of Wi and Ai := [T |Wi ]
Bi
Bi

. Show that for B = B1 ∪ · · · ∪ Br, [T ]BB is a block diagonal matrix with
blocks A1, . . . , Ar.
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HW 21. Consider the matrix

1 1 0
0 1 1
1 0 1

 as an element of M2(R) and T : R3 → R3 given by T (v) = Av.

Find a basis B ⊆ R3 such that the matrix of T with respect to B is block diagonal, with one block a 2× 2
companion matrix and the other block a 1× 1 matrix.

HW 22. 1. Find the invariant factor and elementary divisor rational canonical forms for the matrix

A =

 0 −1 −1
0 0 0
−1 0 0

.

2. Suppose that A is a diagonalizable matrix, such that µA(x) = (x − λ1) · · · (x − λr). Prove that the
elementary divisor rational canonical form of A is the diagonalization of A.

HW 23. 1. Let A ∈ M3(R). prove that µA(x) cannot be an irreducible polynomial of degree two.

2. For the matrix B =

0 −4 85
1 4 −30
0 0 3

, find invertible 3 × 3 matrices P,Q such that P−1BP has the

invariant factor RCF and Q−1BQ has the elementary divisor RCF. Note doing the econd part first may be
easier.

3. For A =

 c 0 −1
0 c 1
−1 1 c

 find invertible matrices P,Q ∈ M3(F ) such that P−1AP is the invariant factor

RCF and Q−1AQ has the elementary divisor RCF.

HW 24. 1. For the matrix A =

0 1 2
0 0 3
0 0 0

, find an invertible matrix P so that P−1AP is a Jordan block.

2. Let A,B ∈ Mn(F ). Prove that the trace of AB equal the trace of BA. Conclude that if A and B are
similar matrices, then A and B have the same trace.

HW 25. 1. Let f(x) ∈ F [x] and C denote the companion matrix for f(x). Prove that µC(x) = f(x).

2. Find the JCFs for the matrix A in problem 1 of Homework 23 in each of the following cases: F = Q, Z2,
Z3, Z197. In each case find an invertible 3× 3 matrix P over the appropriate field such that P−1AP is the
relevant JCF.

HW 26. 1. Find all possible Jordan canonical forms for 9× 9 matrices A over C whose minimal polynomial
is µA(x) = (x− 2)2(x+ i)2(x− i)2.

2. Suppose T ∈ V satisfies µT (x) = x4 and V = 〈T, v1〉⊕〈T, v2〉, where 〈T, v1〉 has basis {v1, T (v1), T 2(v1), T 3(v1)}
and 〈T, v2〉 has basis {v2, T (v2))}. Prove the following:

(i) {T 3(v1), T (v2)} is a basis for the kernel of T
(ii) {T 2(v1), T 3(v1), v2, T (v2)} is a basis for the kernel of T 2.
(iii) {T (v1), T 2(v1), T 3(v1), v2, T (v2)} is a basis for the kernel of T 3.

HW 27. SupposeA is a 14×14 JCF matrix with Jordan blocks J(λ, 3), J(λ, 3), J(λ, 3), J(λ, 2), J(λ, 2), J(λ, 1).
Verify the formulas for the number and sizes of the Jordan blocks by calculating the dimensions of null spaces
of (A− λI), (A− λI)2, (A− λI)3.

HW 28. Find at least four cube roots of the matrix A =

−2 −4 2
−2 1 2
4 2 5

. For this, you can use the fact,

that if ω = e
2πi
3 , then 1, ω, ω2 are distinct cube roots of 1. Are there infinitely many cube roots of A? Find

a formula for A2022.

HW 29. 1. For p = 3, calculate p2(x), p5(x), for pn(x) as in the proposition from the lecture of November
16. Then do the same for p = 5. Hint: Use the Taylor expansions of (1 + x)3 and (1 + x)5 about x = 0.
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2. Find three cube roots of A =

(
9 −25
4 −11

)
.

HW 30. For the matrix in HW 29, problem 2, find eA and eAt and solve the system of differential equations:

x′1(t) = 9x1(t)− 25x2(t)

x′2(t) = 4x1(t)− 11x2(t).

HW 31. Find eA and eAt, for the matrix A =


2 0 0 0
0 2 1 0
0 0 2 0
1 0 0 2

.

HW 32. 1. Let U,W be subspaces of the vector space V . Prove that (U + W )/W is isomorphic to
U/(U ∩W ). Hint: Find a well-defined surjective linear transformation from U → (U + W )/W and then
apply the First Isomorphism Theorem.

2. Let V and U be vector spaces and W ⊆ V a subspace. Set K := {f ∈ L(V,U) | W ⊆ kerne(f)}. Show
that K is a subspace of L(V,U) and L(V,U)/K ∼= L(V/W,U).

HW 33. 1. Give a detailed proof of the third isomorphism theorem stated in the lecture of November 30.

2. For vector spaces V and U over the field F , prove that V ⊗F U ∼= U ⊗F V .

HW 34. Let V and U be vector spaces and suppose {vα}α∈A is a basis for V and {uβ}β∈B is a basis for U .
Fix a basis elements vα1 and uβ1 from each basis. Now write a typical v ∈ V as v = c1vα1 + Σα6=α1cαvα and
a typical element u ∈ U as u = d1uβ1

+ Σβ 6=β1
dαuβ . Note c1 and d1 could be zero. Define h : V × U → F

by h(v, u) := c1d1. Show that h is bilinear.
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